Главная » Статьи » Наука | [ Добавить статью ] |
АВТОМОБИЛЬ ЗАПРАВЛЯЕТСЯ АЛЮМИНИЕМ 2
И, наконец, электролит. Он в данном элементе может быть любым водным раствором: кислотным, щелочным или солевым, поскольку алюминий реагирует и с кислотами, и со щелочами, а при нарушении оксидной пленки растворяется и в воде. Но использовать предпочтительнее щелочной электролит: это проще для проведения второй полуреакции - восстановления кислорода. В кислой среде он восстанавливается тоже, но лишь в присутствии дорогостоящего платинового катализатора. В щелочной же среде можно обойтись куда более дешевым катализатором - оксидом кобальта или никеля или активированным углем, которые вводятся непосредственно в пористый катод. Что же касается солевого электролита, то он обладает меньшей электропроводностью, а выполненный на его основе источник тока - примерно в 1,5 раза меньшей энергоемкостью. Поэтому в мощных автомобильных батареях целесообразно применять щелочной электролит.
У него, однако, тоже есть недостатки, главный из из которых - коррозия анода. Идет она параллельно с основной - токообразующей - реакцией и растворяет алюминий, преобразуя его в алюминат натрия с одновременным выделением водорода. Правда, с мало-мальски ощутимой скоростью эта побочная реакция идет лишь при отсутствии внешней нагрузки, именно потому воздушно-алюминиевые источники тока нельзя - в отличие от аккумуляторов и батареек - долго держать заряженными в режиме ожидания работы. Раствор щелочи в этом случае приходится из них сливать. Но зато при нормальном токе нагрузки побочная реакция почти неощутима и коэффициент полезного использования алюминия достигает 98%. Сам же щелочной электролит отходом при этом не становится: отфильтровав от него кристаллы гидроксида алюминия, этот электролит можно снова заливать в элемент.
Есть в применении щелочного электролита в воздушно-алюминиевом источнике тока и еще один недостаток: в процессе его работы расходуется довольно много воды. Это повышает концентрацию щелочи в электролите и могло бы постепенно изменять электрические характеристики элемента. Существует, однако, такой интервал концентраций, в котором эти характеристики практически не меняются, и если работать именно в нем, то достаточно лишь время от времени добавлять в электролит воду. Отходов в привычном смысле этого слова при работе воздушно-алюминиевого источника тока не образуется. Ведь получаемый при разложении алюмината натрия гидроксид алюминия - это просто белая глина, то есть продукт не только абсолютно чистый экологически, но и весьма ценный как сырье для многих отраслей промышленности.
Именно из него, например, обычно производят алюминий, сначала нагревая до получения глинозема, а затем подвергая расплав этого глинозема электролизу. Поэтому есть возможность организовать замкнутый ресурсосберегающий цикл эксплуатации воздушно-алюминиевых источников тока.
Но гидроксид алюминия обладает и самостоятельной коммерческой ценностью: он необходим при производстве пластмасс и кабелей, лаков, красок, стекол, коагулянтов для очистки воды, бумаги, синтетических ковров и линолеумов. Его используют в радиотехнической и фармацевтической промышленности, при производстве всякого рода адсорбентов и катализаторов, при изготовлении косметики и даже ювелирных изделий. Ведь очень многие искусственные драгоценные камни - рубины, сапфиры, александриты - выполняются на основе оксида алюминия (корунда) с незначительными примесями хрома, титана или бериллия соответственно.
Стоимость "отходов" воздушно-алюминиевого источника тока вполне соизмерима со стоимостью исходного алюминия, а масса их при этом в три раза больше массы исходного алюминия.
Почему же, несмотря на все перечисленные достоинства кислородно-алюминиевых источников тока, они так долго - до самого конца 70-х годов - всерьез не разрабатывались? Всего только потому, что они не были востребованы техникой. И лишь с бурным развитием таких энергоемких автономных потребителей, как авиация и космонавтика, военная техника и наземный транспорт, ситуация изменилась.
Начались разработки оптимальных композиций анод - электролит с высокими энергетическими характеристиками при низких скоростях коррозии, подбирались недорогие воздушные катоды с максимальной электрохимической активностью и большим сроком службы, рассчитывались оптимальные режимы как для длительной эксплуатации, так и для короткого времени работы.
Разрабатывались и схемы энергетических установок, содержащие, кроме собственно источников тока, и ряд вспомогательных систем - подачи воздуха, воды, циркуляции электролита и его очистки, терморегулирования и пр. Каждая из них сама по себе достаточно сложна, и для нормального функционирова ния энергоустановки в целом потребовалась микропроцессорная система управления, которая задает алгоритмы работы и взаимодействия всем остальным системам. Пример построения одной из современных воздушно-алюминиевых установок представлен на рисунке (стр. 63.): на нем толстыми линиями обозначены потоки жидкостей (трубопроводы), а тонкими - информационные связи (сигналы датчиков и команд управления.
В последние годы Московским государственным авиационным институтом (техническим университе том) - МАИ совместно с научно-производственным комплексом источников тока "Альтернативная энергетика" - НПК ИТ "АльтЭН" создан целый функциональный ряд энергетических установок на основе воздушно-алюминиевых элементов. В том числе - экспериментальная установка 92ВА-240 для электромобиля. Ее энергоемкость и, как следствие, пробег электромобиля без подзарядки оказались в несколько раз выше, чем при использовании аккумуляторов - как традиционных (никель-кадмиевых), так и вновь разрабатываемых (серно-натриевых). Некоторые удельные характеристики электромобиля на этой энергоустановке приведены на прилегающей цветной вкладке в сравнении с характеристиками автомобиля и электромобиля на аккумуляторах. Сравнение это, однако, требует пояснений. Дело в том, что для автомобиля учтена лишь масса топлива (бензина), а для обоих электромобилей - масса источников тока в целом. В связи с этим необходимо заметить, что электродвигатель имеет значительно меньший вес, чем бензиновый, не требует трансмиссии и в несколько раз экономнее расходует энергию. Если учесть все это, то окажется, что реальный выигрыш нынешнего автомобиля будет в 2-3 раза меньшим, но все же пока достаточно большим.
Есть у установки 92ВА-240 и другие - чисто эксплуатационные - преимущества. Перезарядка воздушно-алюминиевых батарей вообще не требует электросети, а сводится к механической замене отработанных алюминиевых анодов новыми, на что уходит не более 15 минут. Еще проще и быстрей происходит замена электролита для удаления из него осадка гидроксида алюминия. На "заправочной" станции отработанный электролит подвергают регенерации и используют для повторной заправки электромоби лей, а отделенный от него гидроксид алюминия направляют на переработку.
Помимо электромобильной энергоустановки на воздушно-алюминиевых элементах теми же специалистами создан целый ряд малых энергоустановок . Каждую из этих установок можно механически перезаряжать не менее 100 раз, и число это определяется в основном ресурсом работы пористого воздушного катода. А срок хранения этих установок в незаправленном состоянии вообще не ограничен, поскольку потерь емкости при хранении нет - саморазряд отсутствует.
В небольших по мощности воздушно-алюминиевых источниках тока можно использовать для приготовления электролита не только щелочь, но и обычную поваренную соль: процессы в обоих электроли тах протекают аналогично. Правда, энергоемкость солевых источников в 1,5 раза меньше, чем щелочных, но зато пользователю они причиняют гораздо меньше хлопот. Электролит в них получается совершенно безопасным, и работу с ним можно доверить даже ребенку.
Воздушно-алюминиевые источники тока для питания маломощной бытовой техники выпускаются уже серийно, и цена их вполне доступна. Что же касается автомобильной энергоустановки 92ВА-240, то она пока существует только в опытных партиях. Один ее экспериментальный образец номинальной мощностью 6 кВт (при напряжении 110 В) и емкостью 240 ампер-часов стоит около 120 тысяч рублей в ценах 1998 года. По предварительным расчетам, эта стоимость после разворачивания серийного производства снизится по крайней мере до 90 тысяч рублей, что позволит выпускать электромобиль ценою не намного большей, чем автомобиль с двигателем внутреннего сгорания. Что же касается стоимости эксплуатации электромобиля, то она и теперь вполне сопоставима со стоимостью эксплуатации автомобиля.
Дело остается за малым - произвести более глубокую оценку и расширенные испытания, а затем при положительных результатах начинать опытную эксплуатацию.
Источник: http://www.izobretem.ru/ | |
Категория: Наука | Добавил: vitalg (01.Фев.2011) | |
Просмотров: 300 |